
1

The Significance of Parallel Computing in Solving Large Scientific Problems

Anthony Leonel Carvalho

Florida International University

COT4431 & COT5432: Applied Parallel Computing

Dr. Fahad Saeed

September 22, 2023

2

The Significance of Parallel Computing in Solving Large Scientific Problems

Parallel computing plays a crucial role in addressing large-scale scientific problems that would

be computationally impractical using traditional serial computers. This paper explores the

importance of parallel computing in scientific research, drawing insights from lectures and

additional research, delving into key principles of parallel computing, computational motifs,

memory hierarchy in multicore architectures, the gap between computing and communication

bandwidth, various localities in parallel algorithmic design, and the concept of pipelining. The

goal is to provide a comprehensive understanding of the significance of parallel computing in

the context of large scientific problems.

Why is Parallel Computing Needed for Large Scientific Problems?

Parallel computing is essential for tackling large scientific problems due to the computational

demands they impose. As highlighted in lectures and supported by quantitative evidence, these

problems encompass intricate simulations, data analysis, and modeling tasks that require

substantial computational resources. Traditional single-core computers are unable to meet the

performance requirements within reasonable time frames. To illustrate this, consider a weather

simulation spanning a month. A single-core computer might take several years to complete it,

while a parallel computer with multiple cores, as discussed in the lectures, could finish it within

hours. This quantitative argument underscores the critical need for parallel computing in

reducing computation time for large scientific problems.

Principles of Parallel Computing

Parallel computing is realized through several principles, including task parallelism, data

parallelism, and pipeline parallelism. Task parallelism, as explained in lectures, involves

different processors concurrently performing distinct tasks, making it suitable for applications

with multiple independent tasks, such as distributed computing. In contrast, data parallelism,

3

also emphasized in lectures, breaks a task into smaller subtasks that operate on different data

elements in parallel. These principles demonstrate how parallel computing is realized, enabling

efficient utilization of multiple processors for complex tasks.

Parallel programming introduces several challenges, including the need to find enough

parallelism within applications (Amdahl’s Law) (Fahad Saeed, 'COT4431/COT5432: Applied

Parallel Computing - Lecture 1 Introduction'). Granularity, or determining how big each parallel

task should be, becomes a critical consideration, as well as addressing issues related to data

locality. Furthermore, load balance is essential to prevent certain processors from idling due to

unequal task sizes, especially in cases like tree-structured computations. These complexities

make parallel programming even more challenging than sequential programming (Fahad

Saeed, 'COT4431/COT5432: Applied Parallel Computing - Lecture 1: Introduction').

Computational Motifs

Computational motifs, or computational dwarfs, represent recurring patterns in scientific

computations. They include linear algebra operations (e.g., matrix multiplication), FFT (Fast

Fourier Transform), Monte Carlo simulations, and sorting algorithms, as discussed in lectures.

These motifs are of paramount importance as they serve as building blocks for various scientific

problems. Identifying and optimizing these motifs for parallel execution, as advocated in

lectures, enhances computational efficiency, and accelerates problem-solving.

Empowering Current AI Advancements through Parallel Computing

As someone deeply passionate about AI, I am currently engaged in developing a model for

sentiment analysis on stocks, which exemplifies the real-world impact of the fusion of artificial

intelligence (AI) and parallel computing. AI's rapid evolution, notably within deep learning and

machine learning, has reshaped how parallel computing resources are leveraged. AI algorithms,

4

inherently data-centric, demand substantial computational muscle for tasks such as processing

vast datasets, analyzing complex patterns, and learning intricate relationships.

The combination of AI, parallel computing, and my enthusiasm for progress highlights how

powerful this partnership can be. It doesn't just help AI grow today but also motivates

researchers and fans to discover new uses, which can have a big impact in different fields and

industries.

To add as a note on this advancement of AI and Parallel Computing I would like to cite one

article I read recently, which doubles down on my statement that parallel processing emerges

as an indispensable tool that will impact many industries. Noted by Gaurav in his article "What is

the need of Parallel Processing for Machine Learning in Real Time?" (2020), machine learning

tasks often involve substantial computations. Traditionally executed on single processors, these

tasks can encounter bottlenecks leading to significant processing delays. Parallel processing,

the deployment of algorithms across multiple processors, presents a solution to this challenge. It

allows for distributed processing, significantly reducing the time required for model training,

classification, and various other tasks. While implementing parallelism may introduce

complexities, especially in cases involving algorithmic dependencies, the potential time savings

associated with parallel execution make it a compelling choice in the era of Big Data and

machine learning.

Shifting Paradigms in Parallel Computing

In the rapidly evolving landscape of parallel computing, a fundamental shift has occurred as we

confront the limits of single-core performance dictated by power constraints. As highlighted by

Asanovic et al. [2009 A View of the Parallel Computing Landscape] in their comprehensive

analysis, the era of exponentially increasing clock speeds has given way to the era of multicore

processors. This transition reflects a crucial change in the implicit hardware/software contract

that has long governed computer architecture. The traditional contract, favoring increased

5

transistor count and power dissipation while preserving the sequential programming model, has

become unsustainable in the face of power limitations. Consequently, the focus has shifted

towards parallel computing, with an ever-growing number of processor cores on a chip,

ushering in the era of multicore microprocessors. As proposed by him the current goal is to

make writing programs that harness the full potential of these cores as straightforward as writing

programs for sequential computers, which stands for technological progress in the landscape of

Parallel Computing.

Memory Hierarchy in Multicore Architectures

Memory hierarchy in multicore architectures, as detailed in lectures, encompasses various

memory subsystems, including registers, caches, RAM, and secondary storage. The lectures

emphasized the importance of memory hierarchy in reducing data access latency and improving

overall system throughput in parallel programs. Efficiently utilizing these memory resources

ensures that data can be accessed quickly, minimizing the bottlenecks associated with memory-

intensive scientific computations.

Gap Between Computing and Communication Bandwidth

The lectures shed light on the gap between computing and communication bandwidth in parallel

systems. This gap refers to the significant difference in speed between computation and data

transfer. As quantitatively demonstrated in the lectures, a parallel system may be capable of

performing a staggering number of floating-point operations per second but can transfer data at

a much slower rate. This gap highlights a critical bottleneck in parallel computing. Strategies

discussed in lectures, such as data locality optimization and minimizing data movement, are

essential for bridging this gap and designing efficient parallel algorithms.

6

Different Localities in Parallel Algorithmic Design

In the realm of parallel algorithmic design, various localities play a pivotal role in optimizing

performance. These localities encompass spatial locality, temporal locality, and data locality.

Spatial locality involves the storage of related data in proximity, while temporal locality

emphasizes the reuse of data shortly after its initial access. Additionally, data locality focuses on

minimizing data movement between processors. As I discussed on our latest discussion

[Conversation about Parallel Computing Discussion 1 September 17, 2023, posted by me,

Anthony Carvalho], the significance of these localities extends to considerations beyond parallel

processing alone. For instance, in my discussion, I introduce that a fast, large, and cost-

effective cache memory poses potential challenges. While such a cache could offer substantial

benefits, it might inadvertently lead regular programs to become overly reliant on it, potentially

causing performance issues on standard computers. In the context of parallel programs, the

competition for access to this sizable cache could introduce complexities. Moreover, if the cache

significantly outpaces the speed and size of the rest of the computer's components, its utility

may be limited. Thus, the crux lies in maintaining program efficiency and scalability across

diverse systems, even in the presence of a sizable and high-speed cache.

Pipelining

Pipelining, a concept discussed in lectures, is a technique that overlaps the execution of

multiple tasks by breaking them into stages, with each stage processing data independently. In

graphics processing, for example, rendering a 3D scene involves stages like vertex processing,

geometry shading, rasterization, fragment shading, and output, as highlighted in lectures.

Pipelining enhances throughput and minimizes idle time in parallel systems, making it a

valuable concept for achieving efficient parallel execution.

7

In conclusion, parallel computing is indispensable for efficiently solving large scientific problems,

a fact underscored by lectures and reinforced by quantitative arguments. Understanding the

principles of parallelism, recognizing computational motifs, optimizing memory hierarchy,

addressing the computing-communication gap, and leveraging different localities and pipelining

empower researchers to harness parallelism's power for advancing scientific discoveries. As

technology continues to provide increasingly powerful parallel architectures, the role of parallel

computing in scientific research is poised for further growth.

8

Sources

Fahad Saeed. "COT4431/COT5432: Applied Parallel Computing – Lectures 1 and 2."

PowerPoint Presentation, Florida International University (FIU), Miami FL.

Asanovic, Krste, et al. "A View of the Parallel Computing Landscape." Communications of the

ACM, vol. 52, no. 10, 2009, pp. 56-67. (Provided in the course material)

https://dl.acm.org/doi/abs/10.1145/1562764.1562783

Frąckiewicz, Marcin. "AI Processors: The Importance of Parallel and Distributed Processing in

Machine Learning." ts2.space, 14 May 2023. https://ts2.space/en/ai-processors-the-

importance-of-parallel-and-distributed-processing-in-machine-learning/

Gaurav. "What Is the Need of Parallel Processing for Machine Learning in Real Time?" Medium,

18 March 2020. https://medium.com/@gaurav2proud/what-is-the-need-of-parallel-

processing-for-machine-learning-in-real-time-7bfc9b66e40c

Carvalho, Anthony. "Conversation about Parallel Computing Discussion 1." September 17,

2023. Posted by Anthony Carvalho.

https://fiu.instructure.com/courses/175131/discussion_topics/1860909

https://dl.acm.org/doi/abs/10.1145/1562764.1562783
https://doi.org/10.1377/hlthaff.2019.01309
https://doi.org/10.1377/hlthaff.2019.01309
https://medium.com/@gaurav2proud/what-is-the-need-of-parallel-processing-for-machine-learning-in-real-time-7bfc9b66e40c
https://medium.com/@gaurav2proud/what-is-the-need-of-parallel-processing-for-machine-learning-in-real-time-7bfc9b66e40c

